Skyvue solutions
Comprendre le machine learning

Définition du machine learning
Le Machine Learning peut être défini comme une branche de l’intelligence artificielle englobant de nombreuses méthodes permettant de créer automatiquement des modèles à partir des données. Ces méthodes sont en fait des algorithmes. Un programme informatique traditionnel effectue une tâche en suivant des instructions précises, et donc systématiquement de la même façon. Au contraire, un système Machine Learning ne suit pas d’instructions, mais apprend à partir de l’expérience. Par conséquent, ses performances s’améliorent au fil de son "entraînement" à mesure que l’algorithme est exposé à davantage de données.
L’objectif principal de ce concept est de
permettre à une machine, ou ordinateur, d’apporter des solutions automatiques en
fonction de données préalablement reçues. Cet apprentissage automatique,
également appelé apprentissage statistique, implique la possibilité pour une
machine de traiter un nombre de données colossal dans de brefs délais et de
pouvoir apprendre des choix réalisés au préalable ou non.
Ce type d’approche est une révolution dans le
domaine de l’intelligence artificielle et ouvre les portes à un nombre de
possibilités incommensurable. Néanmoins, même si le machine learning commence à
évoluer considérablement et prendre de l’ampleur sur le marché de
l’intelligence artificielle, il existe encore des limites technologiques à
l’usage massif de ce concept.
Comment fonctionne le Machine Learning ?
Le machine learning (ML), ou apprentissage machine, fait partie des principales technologies d’intelligence artificielle. Il permet de réaliser des prédictions en se basant sur un modèle entraîné à partir d'un historique de données qui pourra évoluer dans le temps. Là où un programme traditionnel exécute des instructions, un algorithme de machine learning améliore ses performances au fur et à mesure de son apprentissage. Plus on le "nourrit" de données, plus il devient précis.
Pour décrire son modèle d'apprentissage, le machine learning emploie des algorithmes statistiques ou encore des réseaux de neurones. Dans les années 2010, le machine learning a atteint un momentum avec l'avènement du big data et la progression des capacités de calcul (et notamment la montée en puissance des GPU). Le big data est en effet indispensable pour entraîner des modèles sur les vastes volumes de données nécessaires au traitement automatique du langage ou à la reconnaissance d'images.Le développement d’un modèle de Machine Learning repose sur quatre étapes principales. En règle générale, c’est un Data Scientist qui gère et supervise ce procédé.
La première étape consiste à sélectionner et à préparer un ensemble de données d’entraînement. Ces données seront utilisées pour nourrir le modèle de Machine Learning pour apprendre à résoudre le problème pour lequel il est conçu. Les données peuvent être étiquetées, afin d’indiquer au modèle les caractéristiques qu’il devra identifier. Elles peuvent aussi être non étiquetées, et le modèle devra repérer et extraire les caractéristiques récurrentes de lui-même. Dans les deux cas, les données doivent être soigneusement préparées, organisées et nettoyées. Dans le cas contraire, l’entraînement du modèle de Machine Learning risque d’être biaisé. Les résultats de ses futures prédictions seront directement impactés.
La deuxième étape consiste à sélectionner un algorithme à
exécuter sur l’ensemble de données d’entraînement. Le type
d’algorithme à utiliser dépend du type et du volume de données d’entraînement
et du type de problème à résoudre.
La troisième étape est l’entraînement de l’algorithme. Il s’agit d’un processus itératif. Des variables sont exécutées à travers l’algorithme, et les résultats sont comparés avec ceux qu’il aurait du produire. Les ” poids ” et le biais peuvent ensuite être ajustés pour accroître la précision du résultat. On exécute ensuite de nouveau les variables jusqu’à ce que l’algorithme produise le résultat correct la plupart du temps. L’algorithme, ainsi entraîné, est le modèle de Machine Learning.
La quatrième et dernière étape est l’utilisation et l’amélioration du modèle. On utilise le modèle sur de nouvelles données, dont la provenance dépend du problème à résoudre.Par exemple, un modèle de Machine Learning conçu pour détecter les spams sera utilisé sur des emails.
De son côté, le modèle de Machine Learning d’un aspirateur robot ingère des données résultant de l’interaction avec le monde réel comme le déplacement de meubles ou l’ajout de nouveaux objets dans la pièce. L’efficacité et la précision peuvent également s’accroître au fil du temps.
Quelle est la relation
entre l'IA et le machine learning ?
L'intelligence artificielle a pour objectif de donner à une machine la faculté de raisonner et de se comporter comme un humain. Le machine learning n'est qu'un moyen contribuant à tendre vers cette vision. Aux côtés du machine learning, il existe d'autres techniques d'IA parmi lesquelles les systèmes expert ou encore la simulation et les jumeaux numériques.
Le machine learning et l’IA sont souvent abordés ensemble, et les termes sont parfois utilisés de manière interchangeable, mais ils ne veulent pas dire la même chose. Une distinction importante est que, même si l’intégralité du machine learning repose sur l’intelligence artificielle, cette dernière ne se limite pas au machine learning. Aujourd’hui, nous utilisons le machine learning dans tous les domaines. Lorsque nous interagissons avec les banques, achetons en ligne ou utilisons les médias sociaux, des algorithmes de machine learning entrent en jeu pour optimiser, fluidifier et sécuriser notre expérience. Le machine learning et la technologie qui l’entoure se développent rapidement, et nous commençons seulement à entrevoir ses capacités.
L’intelligence artificielle et le machine learning font tous les deux parties de la
science informatique, néanmoins, même si ces deux technologies sont très
associées l’une à l’autre, elles n’en restent pas moins bien distinctes.
Quels sont les
différents types de Machine Learning ?
On distingue trois techniques de Machine Learning : l’apprentissage supervisé, l’apprentissage non-supervisé, et l’apprentissage par renforcement. Dans le cas de l’apprentissage supervisé, le plus courant, les données sont étiquetées afin d’indiquer à la machine quelles patterns elle doit rechercher. Le système s’entraîne sur un ensemble de données étiquetées, avec les informations qu’il est censé déterminer. Les données peuvent même être déjà classifiées de la manière dont le système est supposé le faire. Cette méthode nécessite moins de données d’entraînement que les autres, et facilite le processus d’entraînement puisque les résultats du modèle peuvent être comparés avec les données déjà étiquetées. Cependant, l’étiquetage des données peut se révéler onéreux. Un modèle peut aussi être biaisé à cause des données d’entraînement, ce qui impactera ses performances par la suite lors du traitement de nouvelles données.
Au contraire, dans le cas de l’apprentissage non supervisé, les données n’ont pas d’étiquettes. La machine se contente d’explorer les données à la recherche d’éventuelles patterns. Elle ingère de vastes quantités de données, et utilise des algorithmes pour en extraire des caractéristiques pertinentes requises pour étiqueter, trier et classifier les données en temps réel sans intervention humaine. Plutôt que d’automatiser les décisions et les prédictions, cette approche permet d’identifier les patterns et les relations que les humains risquent de ne pas identifier dans les données. Cette technique n’est pas très populaire, car moins simple à appliquer. Elle est toutefois de plus en plus populaire dans le domaine de la cybersécurité.
L’apprentissage "semi-supervisé" se situe entre les deux et offre un compromis entre apprentissage supervisé et non-supervisé. Pendant l’entraînement, un ensemble de données étiqueté de moindre envergure est utilisé pour guider la classification et l’extraction de caractéristiques à partir d’un ensemble plus large de données non étiquetées. Cette approche s’avère utile dans les situations où le nombre de données étiquetées est insuffisant pour l’entraînement d’un algorithme supervisé. Elle permet de contourner le problème.
Enfin, l’apprentissage par renforcement consiste à laisser un algorithme apprendre de ses erreurs pour atteindre un objectif. L’algorithme essayera de nombreuses approches différentes pour tenter d’atteindre son but. En fonction de ses performances, il sera récompensé ou pénalisé pour l’inciter à poursuivre dans une voie ou à changer d’approche. Cette technique est notamment utilisée pour permettre à une IA de surpasser les humains dans les jeux. Par exemple, AlphaGo de Google a battu le champion de Go grâce à l’apprentissage par renforcement. De même, OpenAI a entraîné une IA capable de vaincre les meilleurs joueurs du jeu vidéo Dota 2.
Cas d'usage et
applications
L’un des meilleurs atouts du machine learning est sa capacité à automatiser et accélérer la prise de décision, ainsi qu’à accroître le délai de rentabilité. En réalité, la vaste majorité des progrès effectués sont directement liés au Machine Learning. Il se cache derrière un grand nombre de services modernes très populaires. Par exemple, les systèmes de recommandation de Netflix, YouTube et Spotify exploitent cette technologie.
Le Machine Learning est également ce qui permet aux aspirateurs robots de faire le ménage seuls, à votre boite mail de détecter les spams, et aux systèmes d’analyse d’image médicale d’aider les médecins à repérer les tumeurs plus efficacement. Les voitures autonomes, elles aussi reposent sur l’apprentissage automatique. Il en va de même pour les moteurs de recherche web comme Google ou Baidu. Les fil d’actualité des réseaux sociaux tels que Facebook et Twitter reposent sur le Machine Learning, au même titre que les assistants vocaux tels que Siri et Alexa.
Toutes ces plateformes collectent des données sur les utilisateurs, afin de mieux les comprendre et d’améliorer leurs performances. Les algorithmes ont besoin de savoir ce que regarde le spectateur, sur quoi clique l’internaute, et à quelles publications il réagit sur les réseaux. De cette manière, ils sont ensuite en mesure de proposer de meilleures recommandations, réponses ou résultats de recherche.
Un autre exemple est celui des voitures autonomes. Le fonctionnement de ces véhicules révolutionnaires repose sur le Machine Learning. Pour l’heure, toutefois, les performances de l’IA restent limitées dans ce domaine. Si elle parvient à se garer ou à suivre une voie sur l’autoroute, le contrôle complet d’un véhicule en agglomération est une tâche plus complexe ayant provoqué plusieurs accidents tragiques.
On utilise aussi le Machine Learning pour la traduction linguistique automatique, et pour la conversion du discours oral à l’écran (speech-to-text). Un autre cas d’usage est l’analyse de sentiment sur les réseaux sociaux, reposant également sur le traitement naturel du langage (NLP).
Le Machine Learning est aussi utilisé pour l’analyse et la classification automatique des images de radiographies médicales. L’IA se révèle très performante dans ce domaine, parfois même plus que les experts humains pour détecter des anomalies ou des maladies. Toutefois, elle ne peut pas encore remplacer totalement les spécialistes compte tenu des enjeux. Ainsi, le Machine Learning peut être considéré comme une innovation phare de ce début de XXIème siècle.
Le Machine Learning est une technologie faisant partie du domaine de l’intelligence artificielle et permettant à une machine d’apprendre, par rapport à un certain nombre de données. Il n’est pas toujours facile d’utiliser ses données, c’est pourquoi SkyVue vous accompagne dans l’exploitation de celles-ci à travers ses solutions de documentation digitale.